.

n this post, we discuss the future of autonomous systems and AI.

Let’s consider the case of autonomous racing cars. Berkeley Autonomous Race Car (BARC), Amazon Deep Racer, and others are examples of autonomous racing cars which can be raced effectively without human input.\

The control systems for these cars are enhanced by AI and neural networks.

Certain parts of the automation, such as guiding wheels, can be managed by traditional techniques like Model Predictive Control (MPC).

However, these traditional techniques are not able to manage the process of driving like a human driver.

To achieve complete and effective autonomy, we need AI techniques.

Expanding from this ‘toy example’ of autonomous racing cars, we can consider the same situation more broadly for control systems.

Control systems can be used to optimize complex processes (such as in supply chain or manufacturing).

However, like the autonomous cars we discussed before, these situations cannot rely on MPC alone.

To achieve autonomous behavior in complex industrial processes, we have to combine MPC techniques with Deep Reinforcement Learning (DRL).

To understand this scenario, we have to consider the evolution of control systems.

We can think of autonomous behavior as a control loop problem.

In the simplest case, we have open-loop systems with no feedback mechanism. In this case, we rely only on the mathematical model underlying the process to be accurate under all conditions.

However, this approach has limitations because the operational conditions of the system could change, and we need the system to evolve with it.

Hence, we have feedback control systems.

Feedback control systems suggest the following control action based on the dynamic conditions.

Feedback control systems like **PID controllers** use constant mathematical gains to move toward the objective while calculating the following action dynamically. This control paradigm is already mature in heavy engineering such as chemical engineering.

Expanding from PID controllers, **Model Predictive Control, or MPC controls** processes autonomously under a specific set of constraints based on a predictive mechanism.

MPCs use a constraint optimizer to predict the action in advance and an accurate system model for understanding the environment. MPC models work when accurate models of the world exist and when the problem can be framed in terms of a linear equation. However, nonlinear MPC systems that can handle complex, chaotic situations are not so common. Also, MPC needs very accurate models, and building such models can be costly and time-consuming.

**Deep Reinforcement Learning (DRL)** is based on neural networks and learning by trial and error. DRLs can potentially add learning, strategy, advanced control, and autonomy. DRLs learn by trial and error. Despite their advantages, DRLs also have some disadvantages. DRLs are not easy to train, and they can be trained with less cost when the situation can be simulated virtually. In other words, it's not feasible to learn by iterations/trial and error in the physical world. Hence, a potential solution is to complement MPCs with DRLs

To further evolve control loop systems with MPCs and DRLs, we need to deploy **machine teaching**. Project Bonsai is an example of a system using machine teaching. Machine teaching introduces human (expert)expertise into the feedback loop. For example, in the process of making cement, MPC cannot make all decisions in real time. So, human experts could provide feedback via the DRL modules, when then become set points for the MPC to execute safely within defined parameters.

I see the approach of machine teaching in a broader context of the limitations of pure deep learning / neural networks. There are many cases where the traditional neural network approach will not work because there are many complex cases, the risks are high, or the situation cannot be easily simulated. I expect we will see more of this approach in the future.

**Sources**

Production-ready autonomous systems

Image source Berkeley Autonomous Race Car (BARC),

Posted 9 November 2021

© 2021 TechTarget, Inc. Powered by

Badges | Report an Issue | Privacy Policy | Terms of Service

**Most Popular Content on DSC**

To not miss this type of content in the future, subscribe to our newsletter.

- Book: Applied Stochastic Processes
- Long-range Correlations in Time Series: Modeling, Testing, Case Study
- How to Automatically Determine the Number of Clusters in your Data
- New Machine Learning Cheat Sheet | Old one
- Confidence Intervals Without Pain - With Resampling
- Advanced Machine Learning with Basic Excel
- New Perspectives on Statistical Distributions and Deep Learning
- Fascinating New Results in the Theory of Randomness
- Fast Combinatorial Feature Selection

**Other popular resources**

- Comprehensive Repository of Data Science and ML Resources
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- 100 Data Science Interview Questions and Answers
- Cheat Sheets | Curated Articles | Search | Jobs | Courses
- Post a Blog | Forum Questions | Books | Salaries | News

**Archives:** 2008-2014 |
2015-2016 |
2017-2019 |
Book 1 |
Book 2 |
More

**Most popular articles**

- Free Book and Resources for DSC Members
- New Perspectives on Statistical Distributions and Deep Learning
- Time series, Growth Modeling and Data Science Wizardy
- Statistical Concepts Explained in Simple English
- Machine Learning Concepts Explained in One Picture
- Comprehensive Repository of Data Science and ML Resources
- Advanced Machine Learning with Basic Excel
- Difference between ML, Data Science, AI, Deep Learning, and Statistics
- Selected Business Analytics, Data Science and ML articles
- How to Automatically Determine the Number of Clusters in your Data
- Fascinating New Results in the Theory of Randomness
- Hire a Data Scientist | Search DSC | Find a Job
- Post a Blog | Forum Questions

## You need to be a member of Data Science Central to add comments!

Join Data Science Central